$k-range-determination-methods

This makes only sense for \(\mathbf{k} \cdot \mathbf{p}\) calculations in 1D (\(k_\parallel = ( k_x, k_y )\)) and 2D (\(k_\parallel = ( k_z )\)) but not in 3D.

  1. Solve Schrödinger equation for \(( k_x, k_y ) = (0,0)\).

  2. Define a set of \(k_\parallel\) that one needs and solve \(\mathbf{k} \cdot \mathbf{p}\) Schrödinger equation for every \(k_\parallel\).

$k-range-determination-methods                   required
 model-name                          character   required
 model-type-number                   integer     required
$end_k-range-determination-methods

Two models are supported.

model-name
value:

bulk-dispersion-analysis

model-type-number
value:

1

Here, the range for \(k_\parallel\) is determined automatically by the program using the bulk energy dispersion \(E(k)\). More information…

model-name
value:

k-max-input

model-type-number
value:

2

A maximum value \(k_{\text {max}}\) of \(k_\parallel\) has to be specified in the input file.

Example

!---------------------------------------------!
$k-range-determination-methods
 model-name        = bulk-dispersion-analysis
 model-type-number = 1

 model-name        = k-max-input
 model-type-number = 2
$end_k-range-determination-methods
!---------------------------------------------!