$k-range-determination-methods

This makes only sense for kp calculations in 1D (k=(kx,ky)) and 2D (k=(kz)) but not in 3D.

  1. Solve Schrödinger equation for (kx,ky)=(0,0).

  2. Define a set of k that one needs and solve kp Schrödinger equation for every k.

$k-range-determination-methods                   required
 model-name                          character   required
 model-type-number                   integer     required
$end_k-range-determination-methods

Two models are supported.

model-name
value:

bulk-dispersion-analysis

model-type-number
value:

1

Here, the range for k is determined automatically by the program using the bulk energy dispersion E(k). More information…

model-name
value:

k-max-input

model-type-number
value:

2

A maximum value kmax of k has to be specified in the input file.

Example

!---------------------------------------------!
$k-range-determination-methods
 model-name        = bulk-dispersion-analysis
 model-type-number = 1

 model-name        = k-max-input
 model-type-number = 2
$end_k-range-determination-methods
!---------------------------------------------!