• [ChuangOpto1995]
    Physics of Optoelectronic Devices
    S. L. Chuang
    John Wiley & Sons, Inc., New York (1995)
  • [DattaETMS1995]
    S. Datta
    Cambridge Studies in Semiconductor Physics and Microelectronic Engineering, Cambridge University Press, Cambridge (1995)
    DOI 10.1017/CBO9780511805776
  • [Eissfeller2008]
    Linear Optical Response of Semiconductor Nanodevices
    T. Eißfeller
    Diploma Thesis, Technische Universität München, Germany (2008)
  • [HarrisonQWWD2005]
    P. Harrison
    Theoretical and Computational Physics of Semiconductor Nanostructures, 2nd ed., John Wiley & Sons, Ltd (2005)
    DOI 10.1017/CBO9780511805776
  • [KubisPhD2009]
    T. C. Kubis
    Selected Topics of Semiconductor Physics and Technology (G. Abstreiter, M.-C. Amann, M. Stutzmann, and P. Vogl, eds.), Vol. 114, Verein zur Förderung des Walter Schottky Instituts der Technischen Universität München e.V., München, 253 pp. (2009)
  • [KubisNEGF2005]
    T. Kubis, A. Trellakis, and P. Vogl
    Proceedings of the 14th International Conference on Nonequilibrium Carrier Dynamics in Semiconductors, M. Saraniti and U. Ravaioli, eds., Chicago, USA, July 25-19, 2005, Springer Proceedings in Physics, Vol. 110, 369–372 (2005)
    DOI 10.1007/978-3-540-36588-4_84
  • [ZakharovaPR2001]
    Hybridization of electron, light-hole, and heavy-hole states in InAs/GaSb quantum wells
    A. Zakharova, S. T. Yen, K. A. Chao
    Physical Review B 64, 235332 (2001)
  • [HalvorsenPR2000]
    Optical transitions in broken gap heterostructures
    E. Halvorsen, Y. Galperin, K. A. Chao
    Physical Review B 61, 16743 (2000)
  • [CardonaPR1966]
    Energy-band structure of Germanium and Silicon: The k.p method
    M. Cardona, F. H. Pollak
    Physical Review Vol. 142, No. 2, pp. 530-543 (1996)
    doi: 10.1103/PhysRev.142.530
  • [RideauPRB2006]
    Strained Si, Ge, and Si(1-x)Ge(x) alloys modelled with a first-principles-optimized full-zone k.p method
    D. Rideau, M. Feraille, L. Ciampolini, M. Minondo, C. Tavernier, H. Jaouen, A. Ghetti
    Physical Review B Vol. 74, No. 19, 195208 (2006)
    doi: 10.1103/PhysRevB.74.195208
  • [MasettiIEEE1983]
    Modeling of Carrier Mobility Against Carrier Concentration in Arsenic-, Phosphorus- and Boron-Doped Silicon
    G. Masetti, M. Severi, S. Solmi
    IEEE Trans. Electron Devices, Vol. ED-30 (7), 764 (1983)
    doi: 10.1109/T-ED.1983.21207
  • [Arora1982]
    Electron and hole mobilities in silicon as a function of concentration and temperature
    N.D. Arora, J.R. Hauser, D.J. Roulston
    IEEE Trans. Electron Devices, ED-29, 292, (1982)
    doi: 10.1109/T-ED.1982.20698
D. Caughey, R. Thomas
Carrier Mobilities in Silicon Empirically Related to Doping and Field
Proc. IEEE 55, 2192 (1967)
doi: 10.1109/PROC.1967.6123